The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
$\left( { \sim p} \right) \Rightarrow q$
$p \vee q$
$p \wedge q$
$q \Rightarrow \sim p$
The compound statement $(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) \Rightarrow((\sim P ) \wedge(\sim Q ))$ is equivalent to
Which of the following is a tautology?
The statment $ \sim \left( {p \leftrightarrow \sim q} \right)$ is
The false statement in the following is
If $(p\; \wedge \sim r) \Rightarrow (q \vee r)$ is false and $q$ and $r$ are both false, then $p$ is